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Abstract-An analytical solution is obtained for the one-dimensional moisture migration in a slab of porous 
material under the influence of temperature gradients. The solution is relevant to such problems as the 
moisture redistribution in soil under the influence of solar heat, the moisture migration in the vicinity of earth 

sheltered structures. the measurement of transport properties of porous materials and others. 

NOMENCLATURE 

specific heat of the porous material (wet) 
[J K-’ kg-i]; 
vapor diffusivity in air [m2 s- ‘1; 
porosity; 
Fourier number for heat transfer; 
Fourier number for mass transfer; 
molar enthalpy of vaporization [J mole- ‘1; 
vapor flux [kg mm2 s-l]; 
liquid flux [kg mm2 s-l]; 
total mass flux [kgm-‘s-l]; 
slab thickness [m] ; 
molar mass [kg mole- ‘I; 
ideal gas constant [J mole- 1 K-r] ; 

P,PI,J’z,Q,Q~,R,R~, polynomials; 
P”? vapor pressure [ti m- ‘I; 

4, heat flux [W me21 ; 
T, temperature (absolute) [K] ; 

T,, temperature at boundary 1 [K] ; 

Tl, temperature at boundary 2 [K] ; 
Ti, initial temperature [K] ; 
AT, temperature drop across slab [K] ; 
W, moisture content [kg moisture/kg dry soil] ; 
AW, non-dimensional moisture content ; 
5 linear coordinate [ml. 

Greek symbols 

a, 
E, 
P LIY 

P”. 

PS? 

thermal diffusivity [m2 s-l] ; 
tortuosity factor ; 
air density [kg m- ‘1; 
vapor density [kg me31 ; 
bulk density of the porous material (dry) 
[kg mm31; 
time [s]. 

1. INTRODUCTION 

THE STUDY of combined heat and moisture migration 
in porous materials is of interest to various fields of 
engineering and environmental sciences, for instance 

* Scientific Associate. 
t Regents’ Professor emeritus. 

to manufacturing processes using drying, to the soil 
scientist’s task of predicting the redistribution of soil 
moisture as influenced by solar heat incidence, and to 
the energy and environmental analysis of earth shel- 
tered structures. 

In the present paper, the problem of unsteady one- 
dimensional flow of heat and moisture is treated 
analytically for two cases : constant temperature boun- 
daries and constant heat flux boundaries. It is postu- 
lated that no mass flow occurs through the boundaries 
of the porous medium. The transport properties 
occurring in the transport equations are assumed 
constant. This has the advantage to lead to very 
general relations describing the temperature and mois- 
ture field when these are expressed in non-dimensional 
parameters. A computer solution with the same re- 
strictions is presented in [l]. There, the relationship 
between the local saturation pressure of the vapor in 
the pores of the medium and the local temperature was 
approximated as linear. This approximation was 
dropped in the present analysis and the influence of the 
non-linear relation is investigated. 

An unsteady method for the measurement of the 
thermal conductiviiy of soils has been developed and 
presented in [2]. In this method, a timewise constant 
heat flux is applied to one surface of a layer of the soil 
whereas the other surface is kept adiabatic to heat. The 
question arises how far the results of the measurements 
with this method are influenced by a rearrangement of 
the moisture in the layer. The analysis of the second 
case treated here aims to answer this question. 

2. THE EQUATIONS OF TRANSFER FOR HEAT 
AND MOISTURE FLOW 

The one dimensional equations for the simultaneous 
flow of heat and moisture in a porous material can be 
found in a number of papers [e.g. l-61. These are the 
energy and moisture conservation equations, as 
follows : 

i?T i3 / i)T\ 
(1) 
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In the case of constant transport coefficients, equa- 
tion (1) can be solved independently for the tempera- 

ture distribution then, with the temperature known (as 
a function ofx and t), equation (2) can be solved. In the 
derivation of equation (1) it has been assumed that the 
enthalpy transported by the liquid moisture is neg- 
ligibly small, which implies an upper limit for the 
temperature level. For example, in the case of water in 

soil, the enthalpy of the liquid can be neglected if the 
temperature remains below 50°C. It has also been 
assumed that the gas phase of the porous material is 

saturated with the vapor of the liquid phase and that 
the total pressure is a constant. 

With the assumption of constant transport 

coefficients equations (1) and (2) can be written 
respectively as : 

(7T iPT 
-=Ct= 
27 

(3) 
0.x 

By developing the term in the square bracket, equation 
(4) reads : 

The expressions of the fluxes of heat and matter will 
also be needed in the following for the definition of the 
various boundary conditions. These are as follows : 

the heat flux 

the vapor flux 

the liquid moisture flux 

j, = -p,Kg 
the total mass flux 

j, = j, + i, 

[see e.g. refs. 1 and 21. 

(8) 

The solution of the heat equation (3) with boundary 
conditions (9) (10) and (11) is obtained analytically by 
separation of variables. For large time, the transient 
terms in the equation thus obtained vanish, and the 
steady state temperature profile is found to be simply : 

From equations (3) and (4) it can be seen that the 
time scales for the simultaneous flow of heat and 
moisture are determined by the reciprocal of the 
corresponding diffusivities, i.e. by a ’ and K ‘. For 

most soils and other porous materials the moisture 

diffuG\itv is much smaller than the thermal diffwivitv 

We shall now turn to finding the solution of the 
moisture flow equation (4a) with boundary conditions 
(12), (15) and (16). As stated before, the temperature 

__,; dependent terms shall be evaluated by assuming the 

thus, the time for the development of the temperature 
profiles is much shorter than the corresponding time 
for moisture flow. It is thus permissible to employ the 
large time (asymptotic) temperature profiles in the 
temperature dependent terms of equation (4a1. WC 
shall apply this procedure to obtain analytical \o- 
lutions for the two cases mentioned 

3. MOISTURE REDISTRlBUTlOh 11 4 SLAB W’lTtI 
CONSTANT TEMPERATURE BOI%DARIES 

Solutions presented before [3. -53 describe drying 

processes and stipulate vapor flow through the boun- 

daries. In this paper, the porous material is considered 
to be delimited by two plane parallel surfaces, which 
are maintained at constant temperature and ;ire 
impermeable to mass flow. Let L be the slab thickness. 
T, and T, the constant temperatures at which the two 

face surfaces are maintained, ‘T, the initial (uniform) 
temperature of the slab and Wi the initial (uniform) 

moisture content. Then, the boundary condition of the 
heat equation can be written as : 

r = 0, 0 < x 5 L ‘I (\.O) = ‘Ti I’) I 

r>o. x=0: ‘I-((,, T) -=- i-, (10; 

z = 1 a” 1 II,, :) =: .I’, Illr 

while those for the moisture transfer equation can be 
written : 

T = 0. 0 I s I L: W( Y,(l) = wi (12) 

T > 0. x=0: I”, .y i( + jl = 0 ii:! 

x= L.: 1, -= i, + ,, = 0. (141 

If the flux expressions (6) and (7) are employed, the 
boundary conditions (13) and (14) can be written also 
as: 

115) 

(10) 
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temperature profile to be fully developed, i.e. by Equation (21) can be brought to the form of the heat 
making use of equation (17). With this, the moisture conduction equation by the following change of the 
transfer equation can be written as: dependent variables : 

with the boundary conditions : 

By making use of the Clausius-Clapeyron equation 
to express the vapor pressure derivative, equations 
(18), (19X (20) are respectively: 

(21) 

(22) 

(23) 

where we have denoted by B the following com- 
bination of parameters 

(24) 

(29) 

where 0 is the new dependent variable and 9 is a 
function of x such that: 

V(x) = h?(X). (30) 

From the definition (30), the form of the function $(x) 
can be found as follows. Considering equations (26) 
and (27) we can write: 

s 

x 
r/(x) = $d(x)dx 

0 

=- . L+(T) - U,)l (31) 

and thus: 

‘h’(L) = - & . [W-z) - &T,)] 

( > 

and i++‘(O) = 0. (32) 

Also from equations (30) and (31) and the second of the 
equations (27) results : 

$‘(x) = 
s 

: (ax + b)dx = ;x2 + /Ix (33) 

and 

and by 4(T) a function of temperature defined as: $(x) = ix” + ix2. (34) 

4(T) d$ (25) 

We shall approximate the function 4(T) by a 
By taking into account equation (32), it can be easily 

polynomial in T. The lowest order polynomial which 
verified that with the change of variables (31) the 

maintains the proper character of the temperature 
moisture transfer equation (21) and the boundary 

denendence is a narabola. thus we shall take: 
conditions (12), (22) and (23) become respectively : 

1 

$(T)=aT’+bT+c; $$=2aT+b (26) 
as=,a’e 
a7 ax2 

where a, b and c are coefficients to be found by curve 
fitting. By employing the linear temperature profile 

r=o: (3(x,0)= wi+;g(x) 

(17) in conjunction with equation (26), 4 and its 
derivative with respect to temperature can be replaced 
by two functions of x, 4 and 4d as follows: 

~>o: ~~x_o=~($--)+(~l)~ -g 

4(T) = 4(x) = a+’ + j&x + y1 ; ~~x~L=B(~)~V’d- -; 

d’(T) G d)dX) = ax + b (27) where we have &noted : 

where al, /II, yl, a and /I, are coefficients which can be 
expressed in terms of a, b and c by the relations: Q = -B & &T,). 

._ ! > 

(35) 

(36) 

(37) 

(38) 

/!I1 = - (2aT, + b) . 
yi = UT: + bT, + c 

; /V = b + 2aT,. 

It can be seen that the moisture transfer equation 
has been reduced to the form of the heat conduction 

(28) equation, and that the moisture boundary conditions 
correspond to a constant boundary heat flux. The 
solution of the e-equation can thus be derived from the 
solution of the heat conduction equation with constant 
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boundary heat flux which is given later in this paper. 
We anticipate, by giving here the solution for the 
present case, with equal flux at both boundaries : 

BL3 x e - (nn)‘K~‘~.’ cos x ; + cI __ 
K 

v 

xc 
i 

cos 7cn 2(1 - cos 7rn) 
7+- 

n=l (nu) I (nrt)” , 

1 BL2 
x e-Cnn)*Kr,I-Z cos n; + &fly 

1 BL3 
+zUK+Wi 

where series of polynomials have been denoted as 

follows : 

By reverting to the functional transformation (29) 

the solution can be written in terms of the original 

variable W(x, 7), as follows : 

x e-'""'2K';L2 cos nnx _ p, 

L 

’ 2cosnn 

+ .C,cnn)Ze 
-(nn)2Rr,l.’ cos 71n 5 

L 1 

BL3 x e~cw2KrrL2 cos 7[n x + a-- 
L K 

xi cos xn ( ---if 
2(1 - cos nn) 

“=I (nu) (xn)” ! 

BL2 
x ,-c4*K@ cos ,+ _ /+p, ; 

0 

BL3 _ 
cyp2 (41 J 

On the right hand side of equations (40), the Fourier 
expansion of the polynomials is given. with which the 

solution (41) can be verified to satisfy the initial 
condition. 

It is useful to write the solution (41) in non- 
dimensional form. For this, we introduce the following 
non-dimensional parameters : 

D _!i:DMH,.p,. 
f 

R’p.sT: 
142) 

1431 

With these, the solution (41) can be written in non-- 

dimensional form, as follows : 

It is interesting to note that the parameters D,, x1 and 
x2 are evaluated at the warm face temperature, T,. The 
non-dimensional moisture content, AW, is a negative 
quantity. The two parameters x1 and x2 could be 
replaced at will by their expressions in terms of the 
physically more meaningful quantities H,/RT, and 
AT/T,. If AT is small the parameters x1 and x2 are 
small and the terms containing them can be neglected. 
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Thus, for the case of small temperature difference From the above, it can be seen that in the general case 

between the two faces the solution can be written as: the solution is of the form: 

AW= P, ; -.g,G 
IO 

X 
x e-(~~SFomc~~nn- 

L 1 
- 

.5000 &J 

.4000 I 

AW = f ;, Fomr x1, x2 

while for small AT this can be simplified to: 

AW==f ;,Fo, . 
( > 

The solution represented by equation (47) has been 
(48) plotted in Figs. 1, 2 and 3 for different values of the 

Fo. = 

FIG. 1. AT/T, = 0.0003. 

.5000 
AW - 

.4000 

FIG. 2. AT/T, = 0.0660. 
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FIG. 3. AT/T, = 0.1548 

FIGS. l-3. Rearrangement of the non-dimensional moisture content in a porous slab with mass transfer 
Fourier number as parameter. The temperature at the left surface has suddenly been raised whereas the 

temperature of the right hand surface is kept at its original value. 

non-dimensional parameters. As seen from Fig. 1, in 
which H,/RT, = 16.0 and AT/T, = 0.0003, for a 

small temperature difference between the two faces the 
moisture profiles are very nearly symmetric about the 
slab mid-plane. In Fig. 2, H,/RT, = 17.4 and AT/T, 
= 0.066.In Fig. 3, HJRT, = 16.0and AT/T, = 0.155, 
showing that for large AT the profiles are skewed, 

which is an effect of the non-linear dependence of the 
vapor pressure on temperature. For large time the 

transient terms in equation (47) vanish and the steady 

state solution is found to be: 

various physical properties are assumed to be: po- 
rosity, f = 0.35; vapor diffusivity in the porous 
medium, ED = 2.07 x lo-’ m* s- ’ ; dry density, pS = 
1670 kg mm3 ; liquid moisture diffusivity, K = 5.0 x 
10e9 m2 s-‘; molar enthalpy of vaporization H, == 
4.37 x lo4 J mole-‘; vapor pressure at warm face 

temperature, p, = 4.24 x lo3 N m-l. 
First, the various non-dimensional parameters have 

to be computed. These are found to be: D, = 7.532 x 
lo-“; H,/RT, = 17.36; AT/T, = 6.6 x lo- ‘; l1 = 

0.948 ; xZ = 0.760. It can be seen that this case 

corresponds to the solution displayed in Fig. 2. 
(a) Fo, = Kz/L* = 2.88 x 10e2 g 3.0 x lo-‘, and 

from Fig. 2 it is found (AW)/.,, = -0.17. Then. 
from equation (43), WI,,, = 0.045. 

(b) From equation (49) or from Fig. 2: 

while for small x1 and x2 (small AT) the steady state 

solution becomes simply : 
(AW)s,eadylx=O = -; + ax1 - ?iqxi = -0.37 

and thus 
(50) 

Ws(eady 1 x = (j = 0.039 

Numerical example 
An estimate of the time at which the steady state is 

Equations (47))(50) can be applied to predict the nearly reached can be effected by taking Fo, = 1, and 

moisture redistribution under the influence of tem- thus, T Z L2/K = 1.25 x 10’ s or 145 days. 

perature gradients in actual cases, if the properties of 
the porous material are known. 4. HEAT AND MOISTURE TRANSFER WITH 

As an example, consider the case of a concrete slab of CONSTANT HEAT FLUX BOUNDARIES 

thickness L = 0.25 m, maintained at a temperature 
difference AT = 20 K between the two faces and a 

The porous material is considered to be delimited by 

warm face temperature T, = 303 K. If the initial, 
two plane parallel surfaces, which are impermeable to 

uniform moisture content (water) is Wi = 0.05, it is 
mass flow and on which constant heat fluxes are 

required to determine : (a) the moisture content at the 
applied. The boundary conditions of the heat equation 

warm face at time r = 100 h ; (b) the steady state (long 
can be written as: 

time) moisture content at the warm face location. The 7=0, O<x<L: T(x,O)= 7', (51) 
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z > 0, x =o: -gx 
ax x=o 

= 41 (52) 

x=L: -kar 
ax x=L 

= q2 (53) 

while those for the moisture transfer equation are 
given by equations (12), (13) and (14). 

The solution of equation (3) with boundary con- 
ditions (Sl), (52) and (53) is obtained by separation of 
variables. The result is : 

Yqx,z)= Ti+%[z+P(;) 

-“g&e X - (nn)* ‘FO cos nn _ 

-+[$+P@ L 1 

-“flee - cw* Fo cos n x 
1 L . 

(54) 

The quasisteady (large time) temperature profile is 
obtained by dropping the transient terms in equation 
(54). It thus becomes: 

where P(x/L) and P,(x/L) are the polynomials defined 
by equations (40). 

As was noted before, the temperature profiles de- 
velop much faster than the corresponding moisture 
profiles. This justifies the use of the quasi-steady 
temperature distribution (55) for the evaluation of the 
temperature dependent terms in the moisture transfer 
equation (4). We shall introduce an important simpli- 
fication which applies in the case of small slab 
thickness. For this, we shall prove that if the slab 
thickness is sufficiently small the first term in the 
square brackets of equation (4a) can be neglected 
against the second term. 

The two terms can be evaluated by the following 
approximate relationships : 

f&DM 1 dp, a2T fiDM ---_._._._NP 
p,R T dT ax2 - p,R 

1 dp, q 
‘- -.- (56) 
T dT Lk 

where q is the heat flux applied at the boundary x = 0. 
The term containing the second derivative a2T/ax2 is 
much smaller than the term in (aT/h)’ if: 

(58) 

or 

T Ho 
[ 1 -- 

RT 
3 

For a numerical estimate let’s take L = 0.02 m, q = 
100~Wm-2,k=1.25Wm-1K-1,T=303K,H,= 
4.3 x lo4 J mole-‘. With these it is found: 

Lq 
- = 1.60 and 

T 

c 1 
= 21.50 

k H 2_ 3 
RT 

and thus, the condition (58) can be considered to be 
well fulfilled. Since the above numerical values are 
typical for experimental methods of soil thermal 
conductivity measurement (see [2]), we can consider 
the condition (58) to be satisfied for this very situation. 
If condition (58) is satisfied, the moisture transfer 
equation (4) reduces to : 

where the notation (26) has been employed. 
The moisture transfer boundary condition (13) and 

(14) can be written after due transformations as : 

aw 
x=0: _ =f~+#,(T) 

ax x=o s 

(60) 
x=0 

aw 
x=L: _ =‘t!-!!!&.;. 4(T) 

ax X=L s 
(61) 

x=L 

By denoting : 

s =f&DMq, 
1 

p,RkL 
and S2 =f- 

p,RkL 
(62) 

the moisture transfer equation and its boundary 
conditions are transformed into : 

z = (S, - S&$(T) + Kg (63) 

r=o, W(x,O)= wi (64) 

aw 
r>o, x=0: _ =%4(T) 

ax x=o K 
(65) 

x=0 

x=L: !!!Y 
ax x=L 

Since the slab thickness is small, as imposed by 
condition (58), we shall consider the function 4(T) to 
be evaluated at the mid-plane location and thus to be a 
function of time but not a function of x also. This is so 
because, if the slab thickness is small, the temperature 
difference between the two faces is small and the 
variation of T with x can be ignored in the evaluation 
of 4(T). The temperature at the location of the mid- 
plane is : 
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With this, 4( 7) can be seen as the following function of 

r: 

&7‘) = b(T) = CT* + & + i’ (68) 

where the coefficients I:, 6, y can be expressed in terms 
of the coefficients a, h and c introduced before (see 

equation (26)). If we denote : 

1 (11 - 42 
A=Ti-g ------.L; B+$ (69) 

k 5 s 

the relationships expressing c, 6 and 7 in terms of a, b 

and c are: 

i:=aB’; 6=2aAB+bB; y=aA’+bA+c. 

(70) 

The moisture transfer equation (63) can be reduced to 
the form of the heat conduction equation by the 

following change of the dependent variable : 

W(x,z) = 0(x,7) + (S, - S,) 

With this, the moisture equation and the boundary 

conditions become : 

7 = 0, N(X,O) = wi 

where we have denoted: 

Q*(7) = -S,L$(z); Qz(r) = -S,L&T). (74) 

It can be seen that the problem of solving the (I- 
equation is similar to that of solving the heat con- 
duction equation with given boundary heat fluxes. The 
solution (54) could be applied directly if the equivalent 
fluxes Qi and Qz were not functions of time. As it is, we 
must apply Duhamel’s theorem (see [7]) to derive the 
solution of the O-equation from the solution of con- 

stant heat flux boundaries. This has been done here byt 

the complete derivations shall not be given. We shall 
give only the final result in terms of the original 

variable W(x, 7) : 

FIG 4. Early stages of the rearrangement of the moisture 
ratio in a porous slab with mass transfer Fourier number as 
parameter. A constant heat flux is being applied to the left 
surface, whereas the right surface is kept adiabatic to heat 

flow. 



Analysis of the one-dimensional moisture migration 1077 

(75) 

In the right hand side of equations (76), the Fourier 
expansions of the polynomials are given with which 
the sofution (75) can be verified to satisfy the initial 
condition. 

The solution (75) is presented in Fig. 4, for one case 
of actual measurement of the soil thermal conduc- 
tivity. The values of the various parameters employed 
in the calculation are as follows : slab thickness, L = 
0.02 m, heat flux at face 1: q1 = q = 206 W m-‘, heat 
flux at face 2: q2 = 0, initial uniform temperature: T, 
= 278 K, initial uniform moisture content : Wi = 0.05, 
soil porosity :f = 0.35, dry soil density : ps = 1670 kg 
mm3, wet soil specific heat: c, = 1000 J K-i kg-‘, soil 
thermal conductivity: k = 1.6 W K-r m- ‘, vapor 
diffusivity in soil: ED = 2.07 x 10e5 m2 s-l, liquid 

moisture (water) diffusivity : K = 1.0 x lo-’ mz s-l, 
mofar enthalpy of vaporization : Ii, = 4.4 x lo4 J 
mole-‘. 
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ANALYSE DE LA MIGRATION MONODIMENSIONNELLE DE 
L’HUMIDITE CAUSEE PAR DES GRADIENTS DE TEMPERATURE 

DANS UN MILIEU POREUX 

R&m&On obtient une solution analytique pour la migration monodimensionnelle d’hurmdlte dans une 
plaque poreuse sous l’influence des gradients de tempirature. La solution est applicable aux problimes de la 
redistribution d’humiditC dans le sol sous I’effet du rayonnement solaire, de la migration d’humidit0 au 
voisinage des structures du manteau terrestre, de la mesure des propriites de transport des matkriaux poreux 

et d’autres probltmes. 

UNTERSUCHUNG DES EINDIMENSIONALEN F-EUCHTIGKEITSTRANSPOR’TS 
AIJFGRUND VON TEMPERATURGEFALLEN IN EINEM PORiiSEN MEDIUM 

Zusammenfassung- Es wurde eine analytische LGsung fiir den eindimensionalen Feuchtlgkeltstransport in 
einer Platte aus porijsen Material unter dem EinAuB von Temperaturgefiillen gefunden. Die Lb;sung ist 
wichtig fiir Probleme wie z. B. die Feuchtigkeitsverteilung im Erdreich unter dem EinfluB der Solarwarme. 
den Feuchtigkeitstransport in der Niihe von erdbedeckten Strukturen, das Messen der TransportgriiBen van 

poriisen Stoffen und anderes mehr. 

OAHOMEPHbIti AHAJIM3 MMI-PALlkiM BJIAl-M, BbI3BAHHOfi TEMflEPATYPHbIMM 
rPAAMEHTAMH B IlOPMCTOfi CPEAE 

AHHOTa~HSi--- nOJIyYeH0 OnHoMepHoe aHanHTwIeCKOe peweHHe 3aJlaw 0 M~rpatisli &lam B llnHTr 

~3 nopacroro MaTepLiana non mnimfMeh4 TehmepaTypHblX rpa,ueHTos. Pemenae cnpaeeil:lueo JnR 

TauiX 3anav. K~K nepepacnpenenefiae mart4 i3 nowe nOi, mmmieM COnHeworo Terrna. Mkfrpauuli 

Bnam ~36~1~311 KOHCT~YKWA. 3arny6neHHbIx B rpyHr, e3MepeHHe nep!ZHOCHbIX CBOiiCTB llOpMCTbIX 

MaTepHanoB 53 T. 5 


