Int. J. Heat

Mass Transfer. Vol. 23, pp. 1069-1078

© Pergamon Press Ltd. 1980. Printed in Great Britain

ANALYSIS OF THE ONE-DIMENSIONAL
MOISTURE MIGRATION CAUSED BY TEMPERATURE
GRADIENTS IN A POROUS MEDIUM

H. A. DiNnuLescu* and E. R. G. ECKERTY}

University of Minnesota, Department of Mechanical Engineering,
Minneapolis, MN 55455, U.S.A.

(Received 16 August 1979 and in revised form 20 December 1979)

Abstract—An analytical solution is obtained for the one-dimensional moisture migration in a slab of porous

material under the influence of temperature gradients. The solution is relevant to such problems as the

moisture redistribution in soil under the influence of solar heat, the moisture migration in the vicinity of earth
sheltered structures, the measurement of transport properties of porous materials and others.
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NOMENCLATURE to manufacturing processes using drying, to the soil
Cs specific heat of the porous material (wet) scientist’s task of predicting the redistribution of soil
DK 'kg™']; moisture as influenced by solar heat incidence, and to

vapor diffusivity in air [m?s!];

f, porosity;

Fourier number for heat transfer;
Fourier number for mass transfer;
H,  molar enthalpy of vaporization [J mole™'];
vapor flux [kgm~2s7'];

Jis liquid flux [kgm~2s7'];

total mass flux [kgm~2s™'];

L, slab thickness [m];

molar mass [kg mole™'];

R, ideal gas constant [J mole™! K~1];
P,P,,P,,0,0,,R,R;, polynomials;
vapor pressure [N m™2];

q, heat flux [W m~2];

T,  temperature (absolute) [K];
T,, temperature at boundary 1 [K]};
T,, temperature at boundary 2 [K];

T, initial temperature [K];

AT, temperature drop across slab [K];

W,  moisture content [kg moisture/kg dry soil];
AW, non-dimensional moisture content;

X, linear coordinate [m].

Greek symbols

a, thermal diffusivity [m?s™!];

g, tortuosity factor;

Las air density [kgm™3];

P,  vapor density [kgm™3];

Py bulk density of the porous material (dry)
[kgm™];

T, time [s].

1. INTRODUCTION

THE sTUDY of combined heat and moisture migration
in porous materials is of interest to various fields of
engineering and environmental sciences, for instance

* Scientific Associate.
+ Regents’ Professor emeritus.

the energy and environmental analysis of earth shel-
tered structures.

In the present paper, the problem of unsteady one-
dimensional flow of heat and moisture is treated
analytically for two cases: constant temperature boun-
daries and constant heat flux boundaries. It is postu-
lated that no mass flow occurs through the boundaries
of the porous medium. The transport properties
occurring in the transport equations are assumed
constant. This has the advantage to lead to very
general relations describing the temperature and mois-
ture field when these are expressed in non-dimensional
parameters. A computer solution with the same re-
strictions is presented in [1]. There, the relationship
between the local saturation pressure of the vapor in
the pores of the medium and the local temperature was
approximated as linear. This approximation was
dropped in the present analysis and the influence of the
non-linear relation is investigated.

An unsteady method for the measurement of the
thermal conductiviiy of soils has been developed and
presented in [2]. In this method, a timewise constant
heat flux is applied to one surface of a layer of the soil
whereas the other surface is kept adiabatic to heat. The
question arises how far the results of the measurements
with this method are influenced by a rearrangement of
the moisture in the layer. The analysis of the second
case treated here aims to answer this question.

2. THE EQUATIONS OF TRANSFER FOR HEAT
AND MOISTURE FLOW
The one dimensional equations for the simultaneous
flow of heat and moisture in a porous material can be
found in a number of papers [e.g. 1-6]. These are the
energy and moisture conservation equations, as

follows:
T @ ( 6T>
PsCs—=— k—
ox

ot B ox ()
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= fiDp— P2+ (K.
Ps ot Ox [ﬁ Pa o (p,, ):, + ox < 0x > )

In the case of constant transport coefficients, equa-
tion (1) can be solved independently for the tempera-
ture distribution then, with the temperature known (as
a function of x and t), equation (2) can be solved. In the
derivation of equation (1) it has been assumed that the
enthalpy transported by the liquid moisture is neg-
ligibly small, which implies an upper limit for the
temperature level. For example, in the case of water in
soil, the enthalpy of the liquid can be neglected if the
temperature remains below 50°C. It has also been
assumed that the gas phase of the porous material is
saturated with the vapor of the liquid phase and that
the total pressure is a constant.

With the assumption of constant transport
coefficients equations (1) and (2) can be written
respectively as:

oT T )
= 0 ——
ot ox?
oW feDM & ['1 dp, &T EW @
ot pR ox|T dT ox oxt’

By developing the term in the square bracket, equation
(4) reads:

ow  feDM| d (1 dp,\(oT 2
ot pR [ AT\T dT )\ éx

1'dp, &*T
+— 3
T dT 0x

oW
KW" (4a)

The expressions of the fluxes of heat and matter will
also be needed in the following for the definition of the
various boundary conditions. These are as follows:

the heat flux

k- (5)

the vapor flux

jo= 0B} = oo 1 L )
the liquid moisture flux
Ji=—p,K %I;K (M
the total mass flux
Jm = o+ i (8)

[see e.g. refs. 1 and 2].

From equations (3) and (4) it can be seen that the
time scales for the simultaneous flow of heat and
moisture are determined by the reciprocal of the
corresponding diffusivities, i.e. by « "' and K~ '. For
most soils and other porous materials the moisture
diffusivity is much smaller than the thermal diffusivity ;
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thus, the time for the development of the temperature
profiles is much shorter than the corresponding time
for moisture flow. It is thus permissible to employ the
large time (asymptotic) temperature profiles in the
temperature dependent terms of equation (4a). We
shall apply this procedure to obtain analytical so-
lutions for the two cases mentioned.

3. MOISTURE REDISTRIBUTION IN A SLAB WITH
CONSTANT TEMPERATURE BOUNDARIES

Solutions presented before [3,3] describe drying
processes and stipulate vapor flow through the boun-
daries. In this paper, the porous material is considered
to be delimited by two plane parallel surfaces, which
are maintained at constant temperature and are
impermeable to mass flow. Let L be the slab thickness,
T, and T, the constant temperatures at which the two
face surfaces are maintained, T, the initial (uniform)
temperature of the slab and W, the initial (uniform)
moisture content. Then, the boundary condition of the
heat equation can be written as:

=0, 0<x<L. THx0)=T, (%
>0, x=0: T, =T, {101
x =L Til,ty=1, (11

while those for the moisture transfer equation can be
written:

t=0, 0<x<L: Wix0)=W, {12y
>0, x=0: =+ 5 =0 {13y
x=L: =gt =0, (14

If the flux expressions (6) and (7) are employed, the
boundary conditions (13) and (14) can be written also
as:

oW |
x=0: pK |

CX 1y
_ "‘DM 1 dp, ¢1 (51
PR ar e,

W
x=L: pK -1

XL

oM 1 dp, ¢ | ,

= Prorar o, 1

The solution of the heat equation (3) with boundary
conditions (9), (10) and (11) is obtained analytically by
separation of variables. For large time, the transient
terms in the equation thus obtained vanish, and the
steady state temperature profile is found to be simply:
AT

_ T
LB ! -x (U7
L

Tslcady = Tl + “‘71"'77“\‘ = Tl -

We shall now turn to finding the solution of the
moisture flow equation (4a) with boundary conditions
{(12), (15) and (16). As stated before, the temperature
dependent terms shall be evaluated by assuming the
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temperature profile to be fully developed, ie. by
making use of equation (17). With this, the moisture
transfer equation can be written as:

ow _feDM[ d (1 dp,\| [ATY ’w
o " R [a?(? ?ﬁ)] (T + K5 1®)

with the boundary conditions:

c-o | _sou[L o] (o)
"0 |y=0 PR |T AT ||g-7, \ L
(19)
x=1: W JSDM[L dpv] .(é_T_)
"X =y PR|T AT ||g=r, \ L )
(20)

By making use of the Clausius—Clapeyron equation
to express the vapor pressure derivative, equations
(18), (19), (20) are respectively:

oW d >w
3;=B[d—T¢(T)J+KW (21)
ow L
B |ie B<m>¢(’r1) (22)
ow L
e B(—K - AT>¢(T2) (23)

where we have denoted by B the following com-
bination of parameters

5 _EDMATY?

RpsLZ (24)
and by ¢(T) a function of temperature defined as:
H,p
T) = by
(1) =25 25)

We shall approximate the function ¢(T) by a
polynomial in T. The lowest order polynomial which
maintains the proper character of the temperature
dependence is a parabola, thus we shall take:

HT)=aT?* +bT +c; ggé=2aT+b (26)

where a, b and ¢ are coefficients to be found by curve
fitting. By employing the linear temperature profile
(17) in conjunction with equation (26), ¢ and its
derivative with respect to temperature can be replaced
by two functions of x, ¢ and ¢, as follows:

H(T) = dp(x) = ;x> + B1x + 7,
P(T)=dyx)=ax+§ (27)

where a,, f;, y,, 2 and B, are coefficients which can be
expressed in terms of a, b and ¢ by the relations:

ATY? A
a,=a~<—L—> 5 B = —(2aT1+b)-<TT>

'}’1=aT§+bT1 +c

AT
o= —2a~(T>; B=0b+2aT,.

(28)
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Equation (21) can be brought to the form of the heat
conduction equation by the following change of the
dependent variables:

B
Wi(x,1) = 6(x,7) — Edl(x) (29)

where 0 is the new dependent variable and ¢ is a
function of x such that:

Yr(x) = dalx). (30)

From the definition (30), the form of the function (x)
can be found as follows. Considering equations (26)
and (27) we can write:

Vi) = J " $ulx)dx
0

L
= - (Z‘r’) [9(1) - 9(T1)] BY)

and thus:

L

VL= - (E) [$(T2) - #(T1)]

and ¥'(0)=0. (32)

Also from equations (30) and (31) and the second of the
equations (27) results:

W(x) = f (ax + B)dx = ng +hx (33)
1]
and

P(x) = gxa + gxz.

(34)
By taking into account equation (32), it can be easily
verified that with the change of variables (31) the
moisture transfer equation (21) and the boundary
conditions (12), (22) and (23) become respectively:

a0 %6
5= K:?? (35)
B
t=0: 6(x,0)=W,+ 7<~|//(x) (36)
00 _ L _Q
>0 ,=0°B(K.AT>¢‘T1’= K
o¢ _ L _Q
= x=L_B<K-AT)¢(T1)= = 67
where we have denoted:
L
= _B<E>¢(T1)‘ (38)

It can be seen that the moisture transfer equation
has been reduced to the form of the heat conduction
equation, and that the moisture boundary conditions
correspond to a constant boundary heat flux. The
solution of the #-equation can thus be derived from the
solution of the heat conduction equation with constant
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boundary heat flux which is given later in this paper.
We anticipate, by giving here the solution for the
present case, with equal flux at both boundaries:

L )
blx,7) = 7? [(P (%) B ; (nn)?
x g~ EPKULE (g i) - (Pl <5>
L)\

2 2 112
_ Z __COS 72.”1 —(nn)2 K1/l COST[E'
wey  (mn) L
BL2 i 2 cos n
n=1 (Ttn
K112 BL3
x e K2 cos n X g T
L K
X fcosmn 2(1 —cosmn
L3 (o 20 conm)
n=1 (TU’I) (TU'I) /
x | BL?
x e KU cog T 4 BT
C nL B X
+ LB + (39)
e
24 K !

where series of polynomials have been denoted as
follows:

X
p<_
L

X
COS Th—.
L

2(1 — cos nn)) (40)

i cos mn
e (nn)2 (nn)*

By reverting to the functional transformation (29),
the solution can be written in terms of the original

variable W(x, 1), as follows:

Lo[ [x )
Wix,o) = ?[” (E> - X

_ 2K/L2 X X
x e Kl cogtn — — Py —
L~

,

* 2cosnn
+ ngl (nn)l
BL? ¢
L

n=1

x
— 2RiL2
e~ KL cos ~}

2cosnn
(mn)?

3
5 X BL
x g~ KLY oo - +o—

K
X [cosmn
X +
n§1< (nn)z

2(1 — cos nn))
pe 2 BL?
x ¢~ KLY cog a2 — B—P, (*)

(nny*
L K '\L
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BL? x

On the right hand side of equations (40), the Fourier
expansion of the polynomials is given, with which the
solution (41) can be verified to satisfy the initial
condition.

It is useful to write the solution (41) in non-
dimensional form. For this, we introduce the following
non-dimensional parameters:

_feDMH,p,
D, = 42)
‘T R*,T7 ()
W — W
AW = .
[%or]
~ AT
K -
. Kt
Fo,, = I (44)
1 d¢ [ He ] (AT s
0= ar|,, M E R, )Y
| d [d¢
= (-2 ATY
X2 b dT(dT) _— (AT}

S (HeY H”>+12 ~(AT>2 46
- - RTl RTl/ . \7?1/,’ ' ( )

With these, the solution (41) can be written in non-
dimensional form, as follows:

AW:‘Pl( > 22C08nn
_ n=1

(nn)?

g X
x e {(mm“Fo,, COS TH i

X * 2
- [” <Z> = L

x et Fen cos n -
L.

“uln(p)- 3

N

2cos nn

(mn)?

i X
X e—lﬂn]*h»m CcOS TH —

X Z, [cosmn
ralp(p)- £ (G

2 X
x et Fencos Tn— |
LA

2(1 — €OS nn)j

(ny*
47)

It is interesting to note that the parameters Dy, , and
¥, are evaluated at the warm face temperature, T;. The
non-dimensional moisture content, AW, is a negative
quantity. The two parameters y; and , could be
replaced at will by their expressions in terms of the
physically more meaningful quantities H,/RT; and
AT/T,. If AT is small the parameters y; and x, are
small and the terms containing them can be neglected.
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Thus, for the case of small temperature difference From the above, it can be seen that in the general case
between the two faces the solution can be written as:  the solution is of the form:

x * 2cosmn
AW = |:P1 <Z> B ngl (7"’)2

x
x e~ Fon cos T
L

X
AW =f<z; Foym L1 Xz)

H, AT)

X
AW: _'9F ms e
o f(L Om RT,’ T,

while for small AT this can be simplified to:

x S 2 =
’[P<Z>_,‘§1 (ony? W=t (L’F"'“)'

The solution represented by equation (47) has been

2 X g .
x g~ Fon cog nnZJ' (48) plotted in Figs. 1, 2 and 3 for different values of the
FOm =
.5000 0

.4000 - 150

.3000

.2000

.1000 4

.OOOOW
=.1000
~.2000

~-.3000 -

Fic. 1. AT/T, = 0.0003.

4000
3000

.2000 +

FiG. 2. AT/T, = 0.0660.
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X
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FiG. 3. AT/T, = 0.1548.

FiGs. 1-3. Rearrangement of the non-dimensional moisture content in a porous slab with mass transfer
Fourier number as parameter. The temperature at the left surface has suddenly been raised whereas the
temperature of the right hand surface is kept at its original value.

non-dimensional parameters. As seen from Fig. 1, in
which H/RT, = 160 and AT/T, = 0.0003, for a
small temperature difference between the two faces the
moisture profiles are very nearly symmetric about the
slab mid-plane. In Fig. 2, H,/RT, = 174 and AT/T,
=0.066.InFig.3,H,/RT; = 16.0and AT/T, = 0.155,
showing that for large AT the profiles are skewed,
which is an effect of the non-linear dependence of the
vapor pressure on temperature. For large time the
transient terms in equation (47) vanish and the steady
state solution is found to be:

x 1 1 |
aw), =7 -3 X‘{z(%) “a}

1/x3)? 1
+Xz[6<z> —24] (49)

while for small x, and y, (small AT) the steady state
solution becomes simply :

1

X
(AW), = L 7 (50)

Numerical example

Equations (47)-(50) can be applied to predict the
moisture redistribution under the influence of tem-
perature gradients in actual cases, if the properties of
the porous material are known.

As an example, consider the case of a concrete slab of
thickness L = 0.25 m, maintained at a temperature
difference AT = 20 K between the two faces and a
warm face temperature T, = 303 K. If the initial,
uniform moisture content (water) is W; = 0.05, it is
required to determine: (a) the moisture content at the
warm face at time ¢ = 100 h; (b) the steady state (long
time) moisture content at the warm face location. The

various physical properties are assumed to be: po-

rosity, f = 0.35; vapor diffusivity in the porous

medium, eD = 2.07 x 1075 m? s~ ! dry density, p, =

1670 kg m ™ 3; liquid moisture diffusivity, K = 5.0 x

107° m? s !; molar enthalpy of vaporization H, =

437 x 10*J mole™!; vapor pressure at warm face

temperature, p, = 424 x 103N m™ 2.

First, the various non-dimensional parameters have
to be computed. These are found to be: D, = 7.532 x
10712: H/RT, = 17.36; AT/T; = 6.6 x 107, 7, =
0948; x, = 0.760. It can be seen that this case
corresponds to the solution displayed in Fig. 2.

(@) Fo,, = Kt/L?> = 2.88 x 1072 =~ 30 x 1072 and
from Fig. 2 it is found (AW)|,., = —0.17. Then,
from equation (43), W|,_, = 0.045.

{b) From equation (49) or from Fig. 2:

1 1

i
(AW eagy|s=0 = — 3 + g1 T gt T —0.37

and thus

14

steady |x

o = 0039,

An estimate of the time at which the steady state is
nearly reached can be effected by taking Fo,, = 1, and
thus, 7 = L?/K = 1.25 x 107 s or 145 days.

4. HEAT AND MOISTURE TRANSFER WITH
CONSTANT HEAT FLUX BOUNDARIES

The porous maierial is considered to be delimited by
two plane parallel surfaces, which are impermeable to
mass flow and on which constant heat fluxes are
applied. The boundary conditions of the heat equation
can be written as:

1=0, 0<x<L: T(x,0)=T, (51)
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or
T >0, x=0: —k— = ¢, (52)
ax x=0
oT
x=L1 —k— = ¢, (53)
ox x=L

while those for the moisture transfer equation are
given by equations (12), (13) and (14).

The solution of equation (3) with boundary con-
ditions (51), (52) and (53) is obtained by separation of
variables. The result is:

Lqg,| at x
T(X,T) = Ti + T[F + P(z)

* 2 X
-y ——le“""’z'“’cosnn—
n=1 (TU'I) L

Lg,| at X
_ T2 L p =
k [L2+ ‘(L)

X 2cosmn » x
—e ™ Focos n—|.
(mn) L

(54)

n=1

The quasisteady (large time) temperature profile is
obtained by dropping the transient terms in equation
(54). Tt thus becomes:

41 — 492
—_—=1

T Lpgc,

q 'steady = Tl’ +

where P(x/L) and P,(x/L) are the polynomials defined
by equations (40).

As was noted before, the temperature profiles de-
velop much faster than the corresponding moisture
profiles. This justifies the use of the quasi-steady
temperature distribution (55) for the evaluation of the
temperature dependent terms in the moisture transfer
equation (4). We shall introduce an important simpli-
fication which applies in the case of small slab
thickness. For this, we shall prove that if the slab
thickness is sufficiently small the first term in the
square brackets of equation (4a) can be neglected
against the second term.

The two terms can be evaluated by the following
approximate relationships:

feDM 1 dp, &°T _feDM 1 dp, ¢

pR T dT o = pR T ar 1k ©Y
DM d (1 dp,\ (3T
p,R dT\T dT ) \ox
_fiDM d (1 dp,\ ¢
= p,R dAT\T dT ) ¥* 57

where g is the heat flux applied at the boundary x = 0.
The term containing the second derivative 82T /dx? is
much smaller than the term in (9T/0x)? if:

1075

1 dp, ¢ _d/1dp)\ ¢
—. I SR 1 58
T dT Lk »dT<T ar) @ Y

or

Lq T
<—k—> < T—
L3
For a numerical estimate let’s take L = 0.02m, g =
100- Wm™2k=125Wm 'K ', T=303K,H, =
43 x 10*J mole™!. With these it is found:

L
“_ 1.60 and

T
k [H,, B 3}
RT

and thus, the condition (58) can be considered to be
well fulfilled. Since the above numerical values are
typical for experimental methods of soil thermal
conductivity measurement (see [2]), we can consider
the condition (58) to be satisfied for this very situation.
If condition (58) is satisfied, the moisture transfer
equation (4) reduces to:

oW _ feDM(q;, — q3)

- 0
oA TR Ty K
ot psRKL o(T) + ox?

=21.50

2

(59)

where the notation (26) has been employed.
The moisture transfer boundary condition (13) and
(14) can be written after due transformations as:

ow DM L

x=0: Wi _fDMa Loyl 0
Ox x=0 pstL K x=0
ow fiDMq, L

=L: —/—| = 2Ty (61

= T e kMDY

By denoting:
feDMgq, feDMgq,
Si=" w5

the moisture transfer equation and its boundary
conditions are transformed into:

ow *w

I (S; —S)é(T) + KW (63)
1=0, W(x0) =W, (64)

ow S,L

0’ =0: —_ = —1
>0, x x| K #(T) e (65)

oW S,L

=L: — = —
x x|, " K &(T) L (66)

Since the slab thickness is small, as imposed by
condition (58), we shall consider the function ¢(T) to
be evaluated at the mid-plane location and thus to be a
function of time but not a function of x also. This is so
because, if the slab thickness is small, the temperature
difference between the two faces is small and the
variation of T with x can be ignored in the evaluation
of ¢(T). The temperature at the location of the mid-
plane is:
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q, — t (g; — g,)L & 5
T2 T, =T+ B8, L8 ) (Cv s e ) o
L g 4 K V3 & /

With this, the moisture equation and the boundary
With this, ¢{T) can be seen as the following function of ~ conditions become:

T
[2(¢) _ o0
HT)y= ¢ty =et® + 01+ 7 (68) ot ox?
=0, 6(x,0) = W,
where the coefficients ¢, d, y can be expressed in terms o0 S,L 0.(1)
of the coefficients a, b and ¢ introduced before (sce >0, x =10: oy = ?WT) = TR (72)
equation (26)). If we denote: Xm0
o S,L 0,(1)
=1 =02 o 22V 73
H q 7 ” - h ox x=1 K ¢)(T) K (73)
{42 41 — 42
=T, — — —+—2L; B=-"—"" (69
& to24 k Lo, (9)

where we have denoted:

Qi(1) = =S, Lg(1); Qa(r) = —S,Lp(r). (74)
It can be seen that the problem of solving the §-
equation is similar to that of solving the heat con-
duction equation with given boundary heat fluxes. The
¢=aB*; 6 =2aAB + bB; 7 = ad’ + bA +c. solution (54) could be applied directly if the equivalent
(70)  fluxes @, and Q, were not functions of time. As it is, we
must apply Duhamel’s theorem (see [ 7]) to derive the
solution of the #-equation from the solution of con-
stant heat flux boundaries. This has been done here byt
the complete derivations shall not be given. We shall
give only the final result in terms of the original
Wix,7) = 0(x,7) + (S, — S3) variable W(x,1):

the relationships expressing ¢, 4 and y in terms of a, b
and ¢ are:

The moisture transfer equation (63) can be reduced to
the form of the heat conduction equation by the
following change of the dependent variable:

\.040—‘ W/w\

1030
1.020

1.0104

1 T Y T T T T
.300 400 .500 .600 .700 .800 .900 100G

X
990 . Fom= /L
.
a5« i6?
9801 [ SNe.0xi0°
350007

Fic. 4. Early stages of the rearrangement of the moisture

ratio in a porous slab with mass transfer Fourier number as

parameter. A constant heat flux is being applied to the left

surface, whereas the right surface is kept adiabatic to heat
flow.
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L, x
W(X,T)=W,-—S1-I~<~(8‘E +ét+vy)P 7

@)

4

L
S,—gz-(2ar+5)*Q

()

L
Sy——(et? + 3t + ) Py
K,

6

L
-5 K (2¢) -

. ()

4

L X
SZ-E—(ZM: + 5) 'Ql 'I:‘
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2
L¢ x
+S2“I‘<3 (28)R1 (}:)
Lé o 2 s s X
. N o (kL s
+ S, e (2¢) n; - e cos an -
L* . X
-8, = e ()~ Z ( )4 {2k /L cos an
+S i (2) Z L
'K (m’!) L
LS 2cosmn e x
SZ—K-«3— (2e) "; o ‘e cos an -
$5, 50 % LI ot oo
n=1 (mn) L
& 2cosan PR X
- Sz (y) Z T (reny?ke/L? cog s (75)
In equation (75), @, R, Q, and R, are the following simple polynomyals:
1/x 1 = x
;)= () i) *6(2:) 57 H @
r(* & 1 /x Lix\ 2 i 2 . x
L)~ 720 T 120\L + L) “%o\L *“975“,,=,(nn)5 oS
x\ 1 /x 2cos ntn
o.(;)-3 (L) i) - - £ e
x 1 /x T/x\ 7 [xV & 2cos nn x
— - s | = - 6
Ry (L) 720(L> 144 <L> * 720 (L) 5730~ I ) (76)
In the right hand side of equations (76), the Fourier moisture (water) diffusivity: K = 1.0 x 10~% m? s,
expansions of the polynomials are given with which molar enthalpy of vaporization: H, = 44 x 10*J

the solution (75) can be verified to satisfy the initial
condition.

The solution (75) is presented in Fig. 4, for one case
of actual measurement of the soil thermal conduc-
tivity. The values of the various parameters employed
in the calculation are as follows: slab thickness, L =
0.02 m, heat flux atface 1: g, = g = 206 W m~ 2, heat
flux at face 2: g, = 0, initial uniform temperature: T;
== 278 K, initial uniform moisture content : W, = 0.05,
soil porosuy S =035, dry soil density: p, = 1670 kg
m™3, wet soil specific heat: ¢, = 1000J K~ kg1, soil
thermal conductivity: k = 1.6 W K~! m™!, vapor
diffusivity in soil: eD = 207 x 10~ °m? s7!, liquid

HMT 238—C

mole ™!
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Y A MIGRATION MONODIMENSIONNELLE DE
DITE CAUSEE PAR DES GRADIENTS DE TEMPERATURFE

AVUIDD VAR LS URAL/ADINIS 20 1 DiVin 0N R

DANS UN MILIEU POREUX

[72]
=
]
[es]
.

Résumé—On obtient une solution analytique pour la migration monodimensionnelle d’humidité dans une

plaque poreuse sous l'influence des gradients de température. La solution est applicable aux problémes de la

redistribution d’humidité dans le sol sous l'effet du rayonnement solaire, de la migration d’humidité au

voisinage des structures du manteau terrestre, de la mesure des propriétés de transport des matériaux poreux
et d’autres problémes.

UNTERSUCHUNG DES EINDIMENSIONALEN FEUCHTIGKEITSTRANSPORTS
AUFGRUND VON TEMPERATURGEFALLEN IN EINEM POROSEN MEDIUM

Zusammenfassung— Es wurde eine analytische Losung fiir den eindimensionalen Feuchtigkeitstransport in

einer Platte aus pordsen Material unter dem EinfluB von Temperaturgefdllen gefunden. Die Losung ist

wichtig fiir Probleme wie z. B. die Feuchtigkeitsverteilung im Erdreich unter dem Einflufl der Solarwirme,

den Feuchtigkeitstransport in der Nahe von erdbedeckten Strukturen, das Messen der TransportgroBen von
pordsen Stoffen und anderes mehr.

OJHOMEPHBIN AHAJIU3 MUTPALIMUM BJIATY, Bb[3§AHHOI71 TEMIIEPATYPHBIMU
FTPAOJUEHTAMM B MNMOPUCTON CPEJE

AnHoTannA — [ToJIy4eHO ONHOMEPHOE AHAINTHYECKOE PELUEHHE 3a/ayd O MUIpalMH BJar¥ B IJIHTE

U3 NMOPHCTOrO MaTepHaja MO BIMAHHEM TeMIEPaTYPHBIX TpaiueHToB. PeiueHue cnpape/UiHBO Ajs

TaKMX 3a/iay, KaK MePepacrpeleienne BJIATH B IOYBE 10j| BIHAHHEM COJHEYHOrO TEMJld. MHUIPALMH

Biard BOJM3M KOHCTPYKUMH, 3arnyGJieHHBIX B TPYHT, W3MEDEHHE MEPEHOCHBIX CBOHCTB HOPHCTHIX
MaTepranoB u T. 1.



